• Складчины
  • Программирование

[Udemy] Анализ временных рядов на Python [Центр digital-профессий ITtensive]

Найти складчину
  • Дата начала 3 Фев 2023
Цена: 65 РУБ
Список участников складчины:
  • 1. Waytoomany
  • 2. мидлллл
  • 3. ponygirlll
Показать больше
Скачать курс
Скачать Скачать Скачать
cosmos
Организатор
  • 3 Фев 2023
  • #1

[Udemy] Анализ временных рядов на Python [Центр digital-профессий ITtensive]

Ссылка на картинку
Изучим регрессию, автокорреляция и рекуррентные нейросети для работы с временными рядами

Чему вы научитесь:
  • Теория временных рядов
  • Описание тенденций временного ряда
  • Прогнозирование временного ряда
  • Линейная и нелинейная регрессия
  • ARMA, ARIMA, SARIMA(X)
  • ADL и VAR
  • RNN, LSTM и GRU
  • BiLSTM
Требования:
  • Продвинутый Python
  • Основы машинного обучения
Это дополнительный курс программы Машинное обучение от ITtensive по анализу временных рядов.

В курсе разбираются 3 практических задачи:

1. Фьючерсы (цены) на зерно. Используя помесячные данные фьючерсов на зерно на лондонской бирже и применив ансамбль классических методов - бегущего среднего и полиномиальной регрессии - спрогнозируем цены в период сильной неопределенности.

Проект: прогноз фьючерсов на июнь 2022 года

2. Курсы валют. Изучим частотный и эконометрический подход для описание и прогнозирования курса доллара к рублю. Научимся раскладывать ряд на тренд, сезонность и вариацию и использовать модели ARMA, ARIMA, SARIMA, а также векторные (факторные) данные. Попробуем библиотеки Prophet и Auto-TS (автоматическое машинное обучение).

Проект: прогноз объема экспорта в декабре 2022 года

3. Активность потребителей электроэнергии. Разберемся с нейронными сетями и на основе достаточно стационарного ряда спрогнозируем его поведение, используя ансамбль из рекуррентных нейросетей.

Курсовой проект: прогноз курса акций, используя рекуррентные нейросети.

Теория по курсу включает:

  • Понятие и цели анализа временного ряда
  • Базовые техники - полиномиальные тренды и бегущее среднее
  • Модель Хольта-Винтерса и цвета шума
  • Авторегрессия и стационарность ряда
  • AR/MA, ARIMA, SARIMA(X)
  • ADL и VAR
  • Методологию анализа временных рядов и дрейф данных
  • Рекуррентные нейросети
  • LSTM, GRU, ConvLSTM и BiLSTM
  • В заключении посмотрим на модели WaveNet и трансформеры (механизмы внимания).
Для кого этот курс:
  • Инженеры по данным, работающие с временными сериями
  • Разработчики Python, прогнозирующие временные ряды
  • Ученые по данным, исследующие временные зависимости
Язык - русский
Читать далее...
Показать больше
 
Зарегистрируйтесь , чтобы посмотреть скрытый контент.
Поиск по тегу:
Теги
udemy анализ временных рядов на python центр digital-профессий ittensive
Похожие складчины
Скачать [Центр digital-профессий ITtensive] Машинное зрение: распознавание объектов на Python
  • 13 Авг 2021
  • в разделе: Программирование
Скачать Машинное обучение: выделение факторов на Python [Центр digital-профессий ITtensive]
  • 14 Авг 2021
  • в разделе: Программирование
Скачать Базовый SQL [Центр digital-профессий ITtensive]
  • 13 Авг 2021
  • в разделе: Программирование
Скачать [udemy] Введение в машинное обучение 2020 [Центр digital-профессий ITtensive]
  • 12 Авг 2021
  • в разделе: Программирование
Скачать [Udemy] Mашинное обучение: из грязи в Kaggle-князи [Центр digital-профессий ITtensive]
  • 14 Авг 2021
  • в разделе: Программирование

Войдите или зарегистрируйтесь!

Учетная запись позволит вам участвовать в складчинах и оставлять комментарии

Регистрация

Создайте аккаунт. Это просто!

Регистрация

Вход

Вы уже зарегистрированы? Войдите.

Войти
  • Складчины
  • Программирование
  • Russian (RU)
  • Обратная связь
  • Условия и правила
  • Политика конфиденциальности
  • Справка